Из чего состоит алмаз?
Среди драгоценных камней алмаз является единственным минералом, состоящим только из одного элемента. В его структуре лежит кристаллический углерод, обладающий уникальными свойствами. Алмаз имеет самую высокую твердость, низкий коэффициент трения и высочайшую температуру плавления от 3700 до 4000 °C. Ценность камней определяется в специальных единицах – каратах. Один карат равняется 0,2 граммам.
Обычно алмазы имеют небольшой вес, но иногда попадаются действительно крупные экземпляры. Самым большим в мире был алмаз «Куллинан», обнаруженный в 1905 году в южноафриканской шахте Premier Mine. Его вес в неограненном виде составлял 3106,75 карата, то есть более 620 граммов. В дальнейшем камень подвергли обработке и разделили на 9 крупных бриллиантов и 96 мелких.
Как образуются алмазы?
Происхождение алмазов достоверно не установлено. Ученые выдвигают множество различных гипотез, но большинство придерживается мнения, что камни формировались в мантии, а затем поднимались вулканической магмой ближе к поверхности. По разным оценкам их возраст составляет от 100 млн. до 2,5 млрд. лет.
Существуют алмазы и внеземного происхождения. В частности, крупное месторождение таких камней было обнаружено рядом с сибирским кратером Попигай, образованным в результате падения астероида примерно 35 млн. лет назад.
Что такое синтетические алмазы?
Алмазы используются не только для украшений, но и в промышленных целях (при изготовлении крепких сверл, резцов, ножей). Потребность широкого применения вынудила ученых создавать искусственные алмазы, выращенные в лабораториях. Их называют синтетическими, хотя такое определение не совсем корректно. На самом деле искусственные алмазы не содержат синтетики и по своему составу аналогичны природным. Синтетические камни изготавливают двумя способами – путем химического осаждения из пара (CVD) и под высоким давлением и температурой (HPHT). Существует еще несколько методов, но они не имеют коммерческого успеха.
Как делают бриллианты?
Чтобы алмаз приобрел красивую форму и начал переливаться разноцветными огоньками, его превращают в бриллиант. Основным способом обработки камней является круглая огранка, при которой на алмазе делают 57 граней. Бывают и более сложные методы, позволяющие выполнить до 240 граней или создать бриллиант определенной формы – розой, таблицей, клиньями. Иногда качественно выполненная работа превышает стоимость самого алмаза, а неправильная огранка, напротив, способна уничтожить камень или сделать на нем дефекты.
Что такое метаматериалы? Перспективы
Метаматериалы
Метаматериалы, это специальные композиционные материалы, которые получаются, путём искусственной модификации внедряемых в них элементов. Изменение структуры осуществляется на наноуровне, что дает возможность менять размеры, формы и периоды решетки атома, а также иные параметры материала.
Благодаря искусственному преобразованию структуры, модифицированный объект приобретает совершенно новые свойства, которых нет у материалов природного происхождения.
Благодаря вышеуказанному преобразованию модифицируется магнитная, диэлектрическая проницаемость, а также иные физические показатели выбранного объекта.
В результате преобразованные материалы приобретают уникальные оптические, радиофизические, электрические и иные свойства, которые открывают широкие перспективы для развития научного прогресса. Работы в данном направлении могут привести к появлению совершенно новых устройств и изобретений, которые будут поражать воображение.
Виды и классификация метаматериалов
Метаматериалы принято классифицировать по степени преломления:
- Одномерные
В них степень преломления постоянно меняется лишь в единственном направлении пространства. Подобные материалы выполнены из слоев элементов, расположенных параллельно и имеющих отличающиеся степени преломления. Они способны демонстрировать уникальные свойства лишь в единственном направлении пространства, которое перпендикулярно указанным слоям.
- Двухмерные
В них степень преломления постоянно меняется лишь в 2-х направлениях пространства. Подобные материалы в большинстве случаев выполнены из прямоугольных структур, имеющих преломление m1, и располагающихся в среде с преломлением m2. В то же время элементы с преломлением m1 располагаются в 2-х мерной решетке с кубической основой. В результате подобные материалы способны демонстрировать свои свойства в 2-х направлениях пространства. Но двухмерность материалов не ограничивается только прямоугольником, она может быть создана с помощью круга, эллипса или иной произвольной формой.
- Трехмерные
В них степень преломления постоянно меняется в 3-х направлениях пространства. Подобные материалы условно можно представить в виде массива областей в объемном значении (эллипс, куб и так далее), расположенных в трехмерной решетке.
Метаматериалы также делятся на:
- Проводники. Они перемещают квазичастицы на значительные длины, но с небольшими потерями.
- Диэлектрики. Представляют зеркала почти идеального состояния.
- Полупроводники. Это элементы, которые могут, к примеру, отражать квазичастицы только некоторой длины волны.
- Сверхпроводники. В этих материалах квазичастицы могут перемещаться почти на неограниченные расстояния.
К тому же существуют материалы:
- Нерезонансные.
- Резонансные.
Отличие резонансных материалов от элементов нерезонансного типа в том, что у них возникает диэлектрическая проницаемость лишь на определенной частоте резонанса.
Метаматериалы могут создаваться с разными электрическими свойствами. Поэтому их делят по их относительной проницаемости:
- DNG, то есть double negative — проницаемости отрицательные
- DPS, то есть double positive — проницаемости положительные
- Hi-Z, то есть high impedance surfaces (высокоомные поверхности)
- SNG, то есть single negative — материалы смешанного типа
- DZR, то есть double zero – материал имеет проницаемость равной нулю
Устройство метаматериалов
Метаматериалы представляют вещества, свойства которых обеспечиваются микроскопической структурой, внедряемой людьми. Они синтезируются включением в заданный элемент природного происхождения периодических структур с разнообразными формами геометрии, модифицирующие магнитную и диэлектрическую восприимчивость исходной структуры.
Метаматериалы
Условно подобные включения можно рассмотреть в качестве искусственных атомов, которые имеют довольно большие размеры. Во время синтезирования у создателя материала имеется возможность придать ему различные параметры, которые базируются на форме и размерах структур, переменности периода и тому подобное. Благодаря этому можно получать материалы, которые имеют удивительные свойства.
Одним из наиболее известных подобных элементов являются фотонные кристаллы. Их особенность проявляется периодической сменой степени преломления в пространстве в одном, двух и трех направлениях. Благодаря указанным параметрам материал может иметь зоны, которые могут получать или не получать энергию фотонов.
В результате, если на указанное вещество отпускается фотон, имеющий определенную энергию (требуемой частоты и длины волны), несоответствующей зоне указанного кристалла, то он отражается в противоположном направлении. Если же на кристалл попадает фотон с параметрами, которые отвечают параметрам разрешенной зоны, то он перемещается по нему. По-другому, кристалл выступает в виде оптического фильтрующего элемента. Именно поэтому указанные кристаллы имеют невероятно сочные и яркие цвета.
Применение метаматериалов
Метаматериалы находят и будут находить широчайшее применение во всех сферах, где применяется электромагнитное излучение. Это медицина, наука, промышленность, космическое оборудование и многое другое. Сегодня создается огромное количество электромагнитных материалов, которые уже находят применение.
- В радиофизике и астрономии используются специальные покрытия, которые находят отличное применение с целью защиты телескопов либо сенсоров, применяющих длинноволновое излучение.
- В оптике дифракционное преломление также находит широчайшее применение. К примеру, уже создана суперлинза, которая позволяет решить проблему дифракционного предела разрешения стандартной оптики.
- В микроэлектронике метаматериалы могут произвести настоящую революцию, которая может изменить жизнь практически каждого человека на Земле. Так, к примеру могут появиться на порядок меньшие и невероятно эффективные устройства и антенны для мобильников, и многое др..
- Создание невероятно мощных лазеров. Благодаря применению материалов с измененной структурой уже появляются мощные лазеры, которые при меньшей потребляемой энергии выдают на порядок мощный и разрушительный световой импульс. Промышленные лазеры смогут качественно разрезать не только металлические материалы толщиной в несколько десятков миллиметров, но и на порядок большей величины.
- Создание новых антибликовых материалов. Благодаря их созданию и применению можно будет создавать истребители, бомбардировщики, корабли, подводные лодки, танки, робототехнические системы, мобильные установки, которые не будут видны для сенсоров и радаров врага.
- Возможность видения через стены. Применение новых искусственных материалов позволит создать приборы, которые позволят видеть сквозь стены. Уже сегодня создаются устройства, которые проявляют сильный магнитный отклик на излучение терагерцевого диапазона.
- Создание блеф-стены или несуществующих «копий» военной техники. Метаматериалы позволяют создавать иллюзию присутствия объекта в месте, где его нет. К примеру, подобные технологии уже сегодня применяются российскими военными для создания множества несуществующих ракет, которые «летят» рядом с настоящей, чтобы обмануть ПРО противника.