Всемирный Клубъ-Музей-Лекторий "Маски, Лики, Фигуры и энергоартефакты мира"

Квантовая запутанность

Квантовая запутанность

За последние полтора века произошел значительный скачок в развитии человечества, в особенности в области фундаментальной физики. Не успели ученые окунуться в физику атома, как уже начали строиться атомные станции; научный переворот, совершённый Эйнштейном в скором времени привел нас к полной глобализации с более чем тысячью спутниками на орбите Земли. Примеров – масса, однако осталось еще немало нерешенных задач и необъясненных явлений. Одно из таких явлений скрывается в микромире квантовых процессов, а именно – квантовая запутанность. Что это такое, почему это важно и какие исследования ведутся для решения этого вопроса – разбираем в данной статье.

Основные сведения

Прежде всего, определим само понятие «квантовая запутанность». Вся информация об объекте в микромире описывается неким абстрактным (математическим) состоянием, которое включает, например, вероятность обнаружения частицы в данном объеме, импульс частицы, ее заряд или спин, и тп. Подобное «состояние» может быть описано физическими уравнениями, которые, несмотря на свою абстрактность и сложность, все же способны предсказывать результаты экспериментов.

Квантовой запутанностью называют такое явление, когда квантовые состояния двух и более частиц оказываются взаимосвязаны. То есть, определив состояние одной частицы, можно предсказать некоторые характеристики другой. Примечательно, что изменение некоторого параметра одной частицы приводит к изменению некоторого параметра другой частицы, независимо от расстояния.

Противоречие с «принципом локальности»

Как известно из работ Эйнштейна, в природе имеет место так называемый «принцип локальности», согласно которому любое взаимодействие между телами не может происходить мгновенно, а передается через посредника. Скорость передачи этого взаимодействия не должна превышать скорость света в вакууме. В то же время, как было упомянуто ранее, квантовая запутанность может наблюдаться на огромных расстояниях с «мгновенной передачей информации», что является прямым нарушением принципа локальности.

Эйнштейн, Нильс Бор и квантовая механика

В 1927-м году в Брюсселе состоялся Пятый Сольвеевский конгресс — международная конференция на тему актуальных проблем в области физики и химии. Одна из состоявшихся дискуссий была на тему так называемой Копенгагенской интерпретации квантовой механики.

Нильс Бор и Альберт Эйнштейн

Нильс Бор и Альберт Эйнштейн

Данная теория была разработана Нильсом Бором и Вернером Гейзенбергом и  утверждает о вероятностной природе волновой функции. Несмотря на решение некоторых тогдашних проблем физики, например, связанных с корпускулярно-волновым дуализмом, данная теория также вызывала и ряд вопросов. В первую очередь, само представление объекта с известным импульсом, не имеющего определенной координаты, а лишь вероятность обнаружения в данной точке, — противоречит нашему опыту жизни в макромире. Кроме того, эта теория подразумевала неопределенность в расположении частицы, до тех пор, пока не будет произведено измерение.

Совместное фото участников Пятого Сольвеевского конгресса

Совместное фото участников Пятого Сольвеевского конгресса

Альберт Эйнштейн не мог принять такую интерпретацию, в результате чего и зародилась его известная фраза «Бог не играет в кости», на что Нильс Бор ответил «Альберт, не указывай Богу, что ему делать». Так начался длительный спор Эйнштейна и Бора.

Ответ Эйнштейна последовал в 1935-м году, когда он, вместе с Борисом Подольским и Натаном Розеном опубликовал работу, носившую название «Можно ли считать квантово-механическое описание физической реальности полным?». В данной статье был представлен мысленный эксперимент под названием «парадокс Эйнштейна — Подольского — Розена» (ЭПР-парадокс).

ЭПР-парадокс

ЭПР-парадоксЭксперимент был направлен на опровержение такого фундаментального для квантовой механики утверждения, как принцип неопределенности Гейзенберга, который гласит, что нельзя одновременно измерить две характеристики частицы, зачастую имеют ввиду – импульс и координату.

ЭПР-парадокс звучит следующим образом. Пусть две частицы одного сорта образовались вследствие распада третьей частицы. Тогда сумма их импульсов будет равна импульсу исходной частицы, согласно закону сохранения импульса. Далее, зная импульс исходной частицы (которую заранее подготовят экспериментаторы), и измерив импульс второй частицы, можно рассчитать импульс первой. То есть в результате измерения мы получили такую характеристику первой частицы как импульс. Теперь измерим координату второй частицы, и в итоге будем иметь две измеренные характеристики одной частицы, что прямо противоречит принципу неопределенности Гейзенберга.

Однако в самой же квантовой механике есть средства для разрешения этого парадокса. Согласно законам квантового мира – любое измерение приводит к изменению характеристик измеряемого тела. Тогда до измерения координаты второй частицы, действительно, может иметь место определенный импульс. Но в момент измерения координаты состояние частицы меняется и нельзя утверждать, что эти характеристики были измерены одновременно.

Тем не менее, в результате корпускулярно-волнового дуализма, находясь на некотором расстоянии, эти возникшие частицы имеют состояния, описываемые одной волновой функцией. Из этого вытекает, что измерение (а значит и изменение) импульса одной частицы приводит и к измерению импульса другой. Причем увеличение расстояния между этими частицами не запрещается, что опять же противоречит принципу локальности.

Теорема Белла

Человеку, существующему всю свою историю в масштабах макромира, сложно понять законы квантовой механики, которые часто противоречат наблюдениям в макромире. Так зародилась теория скрытых параметров, согласно которой, упомянутое ранее дальнодействие между частицами, может быть вызвано наличием неких изначально скрытых параметров частиц. Проще говоря – измерение одной частицы не приводит к изменению состояния другой, и оба эти состояния возникли вместе с этими частицами, в момент распада исходной частицы. Такое интуитивно понятное объяснение удовлетворило бы человеческий ум.

В 1964-м году Джон Стюарт Белл сформулировал свои неравенства, позже называемые теоремой, которые позволяют провести эксперимент, позволяющий точно определить – имеют ли место некие скрытые параметры. То есть если частицы имели скрытые параметры до своего разделения, то выполнилось бы одно неравенство, а если их состояния связаны и неопределенны до измерения одной из частиц – другое неравенство Белла.

В 1972-м году подобный эксперимент был проведен Фридманом и Клаузером, и результаты указывали на существования неопределенности состояний до измерения. Впрочем, данное явление воспринималось научным сообществом как некий конфуз, который рано или поздно будет разрешен. Однако в 1981-м году был нанесен второй удар по физической теории – эксперимент Аллена Аспе. Этот весьма популярный эксперимент стал последним аргументом в пользу существования квантовой запутанности и так называемого «жуткого дальнодействия». И хотя окончательно поставить точку в этом вопросе не получилось, результаты были настолько убедительны, что ученым пришлось принять такую особенность квантового мира.

Исследования в области квантовой запутанности

Почему вновь поднимается эта давно известная тема? Дело в том, что за последние несколько лет разработки в области квантовых компьютеров, работающих на основе квантовой запутанности, заметно шагнули вперед. Так в марте 2018-го года Google заявила об успешном создании 72-кубитного квантового процессора под названием Bristlecone, который достигает «квантового превосходства». То есть  способен выполнять задачи, которые недоступны для обычных компьютеров.

Квантовый процессор Bristlecone компании Google (слева) и схематическое изображение кубитов, где каждый кубит связан с соседними (справа)

 

Квантовый процессор Bristlecone компании Google (слева) и схематическое изображение кубитов, где каждый кубит связан с соседними (справа)

Также летом 2018-го года в журнале Nature была опубликована научная работа, которая рассказывает о создании первого квантового процессора с долговременной памятью. Ранее, в 2015-м году, эта же исследовательская группа из Делфтского технического университета вместе с главой организации QUTech — Рональдом Хэнсоном представили еще более убедительные доказательства существования квантовой запутанности.

Об эксперименте в Делфтском техническом университете

Эксперимент, результаты которого были опубликованы в 2015-м году, происходил следующим образом. В эксперименте использовались алмазные листы с решеткой полостей, которые заполняются азотом.  Такая технология была разработана исследователями Калифорнийского университета в Санта-Барбаре и Национальной лаборатории Лоуренса в Беркли в 2010-м году. Два таких кристалла алмаза расположили на расстоянии 1.3 км друг от друга. В результате облучения обоих пластин микроволновым излучением и лазерами электроны этих «алмазных ловушек» переходили в возбужденное состояние и испускали пару фотонов, которые взаимодействовали друг с другом. Как следствие этого взаимодействия – возникала квантовая запутанность между электронами, которые излучали эти фотоны.

Точки расположения алмазных листов на территории кампуса Делфтского технического университета

Точки расположения алмазных листов на территории кампуса Делфтского технического университета

Для обнаружения данного явления ученые проводили измерение спинов электронов с разных пластин практически одновременно, что не допустило бы обмен информацией между ними со скоростью света. Однако, как оказалось, спины двух электронов были синхронизированы, что говорит о передачи информации неким образом, который позволяет превысить скорость света. Конечно, сама процедура определения характеристик электронов намного сложнее, и потребовалось провести немало расчетов и сравнить их волновые функции. Несмотря на все сложности эксперимента, он проводился 245 раз в течение 18-ти дней, и был запланирован таким образом, чтобы избежать всех возможных ошибок, как со стороны измерительных приборов, так и со стороны окружающей среды.

Бас Хенсен и Рональд Хэнсон устанавливают оборудование для эксперимента по проверке неравенств Белла

Бас Хенсен и Рональд Хэнсон устанавливают оборудование для эксперимента по проверке неравенств Белла

Окончательно закроет эту тему будущий крупный эксперимент в Массачусетском технологическом институте в течение ближайших трех лет. Исследовательская группа планирует собирать электромагнитное излучение пульсаров, а также свет, приходящий из дальних галактик. Подобный эксперимент позволит избежать какой-либо связи измерительных приборов и источников сигнала, тем самым устраняя последнюю возможность наличия скрытых параметров.

Схематическое изображение пульсара

Схематическое изображение пульсара

Квантовый компьютер и интернет

Разработки QUTech вышли далеко за пределы теоретической физики и двинулись в сторону квантового компьютера. Так в 2012-м году несколько научных групп разработали двухкубитный квантовый процессор на основе вышеупомянутых кристаллов, а в 2018-м – была опубликована работа, в которой исследователи описали созданный ими квантовый процессор с долговременной памятью. Проблема создания такого процессора состояла в том, что связи между квантовыми битами («кубитами») пропадали быстрее, чем ученым удавалось их обнаружить. Очередной эксперимент в Делфтском техническом университете показал, что новый процессор не обладает данной проблемой.

Квантовый компьютер и интернет

Исследовательская группа использовала вышеупомянутые алмазные пластины, где среди атомов углерода «спрятался» атом азота. Место, в котором располагается атом азота, обладает специфическими свойствами, как если бы в этой ячейке кристаллической решетки находился атом углерода, но в неком «замороженном» состоянии. Такой подход заметно продлевает жизнь алмазным кубитам (300-500 миллисекунд). Кроме того, был разработан и новый метод «запутывания» электронов в этих дефектных точках.

Данная технология не только является прорывной в области квантовых компьютеров, но и приближает нас на шаг к квантовому интернету. Взаимодействие нескольких отдельных квантовых компьютеров позволит организовать между ними сеть, работающую посредством передачи запутанных кубитов. Преимущество состоит в скорости: пусть имеется k квантовых компьютеров, каждый из которых состоит из n кубитов. Тогда для передачи по обычной сети полного состояния одного такого компьютера понадобится 2n бит данных, в то время как для квантовой сети потребуется лишь n кубитов. Запутанность между всеми компьютерами в масштабах целой сети дает преимущество в скорости передачи информации на несколько порядков.

Итоги

Несмотря на квантовый мир, будоражащий множество умов по всему миру, квантовая запутанность сегодня является общепризнанным явлением, которое не только наблюдается экспериментально, но и используется в технологических процессах. Дальнейшее применение квантовой запутанности может вывести человечество на совсем иной уровень развития, с суперкомпьютерами и невообразимо быстрым интернетом.

Источник
 

Получить консультацию
Яндекс.Метрика